Robot Devices, Kinematics, Dynamics, and
Control: Final Project
Spencer Powers

Trevor Schwehr
Kevin Wang

December 15, 2021

=
1
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Laboratory for Computational Sensing and Robotics

Contents

1 Problem Statement 3
2 Algorithms 3
2.1 Inverse Kinematics Implementation 4
2.2 Resolved-Rate Control Implementation 4
2.3 Transpose-Jacobian Control Implementation)
3 Additional Considerations 5
3.1 Choosing a Home Configuration 5
3.2 Safety Considerations 6
4 Simulation Results 6
4.1 Inverse Kinematics Implementation 7
4.2 Resolved-Rate Controller Implementation 10
4.3 Transpose Jacobian Controller Implementation 13
5 Extra Task 16
6 Contributions 17
6.1 All . . . o 17
6.2 Spencer Powers 17
6.3 Trevor Schwehr 18
6.4 KevinWang oo 18
List of Tables
1 Inverse kinematics implementation error metrics. 9
2 Resolved-rate controller implementation error metrics. 13
3 Transpose-Jacobian controller implementation error metrics. . . . 16

1 Problem Statement

The objective of this project was to simulate the UR5 robot arm using RViz
to perform a move-and-place task. Specifically, this task involves moving the
arm from a starting configuration to a target configuration, while pausing above
each desired configuration to ensure that the final motion in each instance is
strictly vertical. The arm begins and ends the move-and-place sequence in a
chosen home configuration.

Three implementations of the move-and-place task are detailed in the follow-
ing section. The first uses inverse kinematics, the second uses a resolved-rate
control, and the third uses transpose Jacobian control. A number of safety
checks, detailed in Section 3.2, were implemented to ensure that the arm does
not hit the floor or encounter singular conditions.

2 Algorithms

For each of the control methods, we executed a similar algorithm. As both
the inverse kinematics function and the forward kinematics function used in
dynamic control are computed for the relationship between the base of the
robot and the tool frame, we first use a transformation to convert the desired
goal for the gripper frame to a desired goal for the tool frame. We did this by
left multiplying the desired goal frame by the inverse of the transformation from
the tool to the gripper, shown below. This transformation matrix accounts for
the 0.1303m length of the gripper, as well as the -90 degree rotational offset
around the z-axis from the tool frame.

cos(=%) —sin(=%) 0 0
sin(=%) cos(—=5) O 0
0 1 0.1303
0 0 0 1

After computing the transformed frames, we computed the location of frames
at a predetermined height above each of the desired positions. We used these
higher frames to compute the location of the "home” frame equidistant from
each of the target frames at a reasonable height above the offset frames and
the floor of the simulation, as detailed in Section 3.1. Next, we used the user-
chosen method for controlling the robot through the sequence of frames for
the move-and-place task. The full sequence starts at the home frame, moves
to above the start frame, down to the start frame, returns to above the start
frame, moves to above the target frame, down to the target frame, returns to
above the target frame, and finally returns to the home frame. At each of the
desired goal locations (start and target), we computed the error between the
actual pose of the robot and the desired pose of the robot as shown below.

dso@ = /Tr (R~ Ra)(R — Ry)T)

dRs = HI‘—I’dH

2.1 Inverse Kinematics Implementation

The inverse kinematics trajectory control was implemented through the pro-
vided inverse kinematics matlab function ur5InvKin.m. This function calculates
all eight possible inverse kinematics solutions for the URb for a given frame in
the workspace, returning a 6x8 matrix with each column corresponding to one
possible joint angle configuration where the robot tool frame aligns with the
target frame. After studying the different solutions provided by urbInvKin, it
becomes apparent that only about half are reasonable solutions. It would not
be safe for the robot to crash through the floor of the simulation, so all ”elbow
down” orientations are immediately rejected. The next major consideration is
whether the wrist should be oriented ”wrist in” or ”wrist out”, these positions
are similar to the "wrist up” or "wrist down” positions shown in [1]. Through
trial and error, we found that any distance within 0.3 m of the robot base would
cause conflicts if the wrist is oriented away from the robot. We decided to use
wrist in for locations within 0.3 m and wrist out for locations farther than 0.3 m.
The final decision is whether to use ”shoulder left” or ”shoulder right”, which is
fairly arbitrary so we decided on shoulder left. This algorithm is implemented
in the filteredInvKin.m function. For each frame in the sequence, we use this
algorithm to determine the correct joint angles and use move_joints function of
the UR5 MATLAB interface to move the urb through the sequence.

2.2 Resolved-Rate Control Implementation

The discrete-time joint angle update equation for the resolved-rate controller is
expressed as follows:

a1 = o5 — KAL[T? (q5)] ' &

where qj is the vector of joint angles at step j, K is the controller gain, At is
the time step, J% (q;) is the body Jacobian as a function of the joint angles
at step j, and & are the twist coordinates of the error g4« which describes the
transformation between the initial configuration and the desired configuration.

To use this controller, the arm starts at an arbitrary non-singular config-
uration and is given a target configuration. The twist {; is computed given
these two configurations, the initial positional and angular errors are computed,
and the controller then enters its main loop. While the two errors are above
hard-coded thresholds, namely 2 cm and 1 degree respectively, the joint angles
of the next step are computed via the above equation. If the computed angles
correspond to a singular configuration, as detected by the three Jacobian-based
manipulability measures detailed in Section 3.2, the step is aborted. If the next
step does not result in a singular configuration, the arm is moved to the desired
new joint angles via the move_joints function of the UR5 MATLAB interface.

This loop runs until either both errors fall below their respective thresholds for
success or singular conditions are nearly encountered and consequently aborted.
Through experimentation, we chose a gain of K = 0.2. This value was deter-
mined to be high enough to move at a reasonable pace, but not so high that the
system became unstable or yielded too large of step sizes.

2.3 Transpose-Jacobian Control Implementation

The discrete-time joint angle update equation for the transpose-Jacobian con-
troller is similar in form to the update equation of the resolved-rate controller.
The update equation is expressed as follows:

Qi1 = a5 — KAL[JY (a5)] " &

where qj is the vector of joint angles at step j, K is the controller gain, At is
the time step, J% (q;) is the body Jacobian as a function of the joint angles
at step j, and & are the twist coordinates of the error g4« which describes the
transformation between the initial configuration and the desired configuration.

The inner workings of the transpose-Jacobian controller are identical to those
of the resolved-rate controller detailed in the preceding section. The most sig-
nificant difference is that the Jacobian as a function of the joint angles at step
j is transposed instead of inverted in the update equation. In addition, the
positional and angular tolerances for success were slightly increased to 5 cm
and 5 degrees respectively to keep the run time within reasonable limits, as
this particular controller runs significantly slower than the other two. Through
experimentation, we chose a gain of K = 0.4. This value was determined to
be high enough to move at a reasonable pace, but not so high that the system
became unstable or yielded too large of step sizes.

3 Additional Considerations

3.1 Choosing a Home Configuration

It was discovered that the performance of the resolved-rate controller and the
transpose-Jacobian controller was dependent upon the choice of the home config-
uration, meaning the configuration in which the manipulator begins and ends the
move-and-place task. If a suboptimal home configuration was chosen, it could
lead to either controller nearly encountering singular conditions and aborting.
After experimentation, a reasonably reliable approach was found to be set-
ting the home configuration joint angles to be the average of the start and target
configuration joint angles. The resulting joint angles were necessarily wrapped
to be in the viable joint angle ranges of [—7, 7] to ensure that the arm was not
commanded to move out of its operating range. Finally, the second and third
joint angles were slightly modified after the averaging and wrapping process
to raise the arm in the positive z direction to ensure that 3D movement was

required to bring the arm from the home configuration to above the start and
target configurations.

3.2 Safety Considerations

To avoid moving the arm into singular configurations over the course of tra-
jectories computed by the resolved-rate and transpose-Jacobian controllers, the
manipulability of the arm in the proposed next step’s configuration is checked
prior to movement. Three manipulability measures are computed each step,
and in each case, a measure of zero corresponds to singular conditions. The
first measure is the smallest singular value of the Jacobian, the second measure
is the inverse of the Jacobian’s condition number, and the third measure is the
determinant of the Jacobian. The manipulability measure closest to zero is cho-
sen from the three, and if it is within a hardcoded tolerance of 0.003, then the
planned next step’s movement is aborted with a warning message.

In addition, due to the nature of the move-and-place task, the method by
which the home configuration was determined inherently prevents the resolved-
rate and transpose-Jacobian controllers from generating trajectories that collide
with the floor; in order for the gripper to move strictly down to both the start
and target locations, the orientation of the gripper facing downwards is fixed
across both configurations. Thus, averaging their respective joint angle vectors
produces the same gripper orientation at the home configuration, and since there
is little to no error in those joint angles as computed in the controller loops, the
arm is not incentivized to invert itself through the floor over the course of the
trajectory. To ensure the safety of the inverse kinematics approach, we filter
out all configurations that would cause the robot to go below the floor of the
simulation by rejecting all ”elbow down” configurations. Further, the speed of
the robot is controlled by choosing an appropriate time step for the movement.
We manually chose a time that would allow the robot to complete the move at
a reasonable, and safe, speed. This is further checked by the internal warnings
of the UR5 MATLAB interface.

4 Simulation Results

As shown in the following figures and tables, we were able to successfully com-
plete the move-and-place task using all three methods of control. The most
precise of the three methods was the inverse kinematics approach. Greater pre-
cision could have been achieved with the resolved-rate and transpose-Jacobian
method at the cost of a significantly increased run time.

The movie files submitted alongside this report show the entire trajectories
instead of the key positions shown below. We would like to note that the
videos appear to have an inconsistent frame rate while recording, leading to
the trajectories looking choppier than they do in RViz. We tuned the gains
to ensure that the arms did not move excessively quickly at any point in the
trajectories, and while they may appear to move in bursts due to the inconsistent

recording quality, re-running the simulations shows that our chosen gains do in
fact prevent the arm from moving at an unsafe speed.

4.1 Inverse Kinematics Implementation

gr:Fper_L‘k

base_'ink

Jargetl

Figure 1: Home configuration.

rarget2

1 L]
gnppt\jpick

base_fink

1argetl

Figure 2: Above starting frame.

rarget2

base_‘ink

B
T 'PﬂUﬂCk

Figure 3: At starting frame.

Targetl
—

[,Jper_pilk

Target2

nase_link

Figure 4: Above target frame.

Targetl

—

o Beegeralc

pase_'ink

Figure 5: At target frame.

E

gripper_ L‘k

base_'ink

Targetl

Figure 6: Back to home configuration.

The errors for the inverse kinematics implementation are summarized in the
table below:

H Desired Frame dgso(s) drs H

gst, 0.0140 0.0015
gsts 0.0140 0.0011

Table 1: Inverse kinematics implementation error metrics.

4.2 Resolved-Rate Controller Implementation

rarget2

gr:Eper_L‘k

base_'ink

Jargetl

Figure 7: Home configuration.

1arget?

gan?nuick

base_;nk
‘Targetl

Figure 8: Above starting frame.

10

O i:1r19|uic k Bl
~rargl

Figure 9: At starting frame.

Targetl

—

4 'ppE‘l’_piJk

Target2
pase- link

Figure 10: Above target frame.

11

Targetl

—

o gy

pase- link

Figure 11: At target frame.

1arget2

gripper_ L‘k

base_'ink

Targetl

Figure 12: Back to home configuration.

The errors for the resolved-rate controller implementation are summarized in
the table below:

12

H Desired Frame dgso(s) drs H

gst1 0.0130 0.0180
gsta 0.0140 0.0171

Table 2: Resolved-rate controller implementation error metrics.

4.3 Transpose Jacobian Controller Implementation

-

gripper_ L‘k

base_'ink

Jargetl

Figure 13: Home configuration.

13

y L}
grlppUpick

base_link
1argetl

Figure 14: Above starting frame. Note that the gripper frame’s position is
further from the desired point directly above the target frame because the po-
sitional tolerance was increased to 5 cm to keep runtime to a reasonable length.

Target2

yrippg- pick base link
1artetl

Figure 15: At starting frame. Note that the gripper frame’s position is further
from the desired point directly above the target frame because the positional
tolerance was increased to 5 cm to keep runtime to a reasonable length.

14

Targetl

G !)per_pilk
Target2

vase_'ink

Figure 16: Above target frame. Note that the gripper frame’s position is further
from the desired point directly above the target frame because the positional
tolerance was increased to 5 cm to keep runtime to a reasonable length.

Targetl

—

[‘Jper_p‘rl-’

Target2

base_link

Figure 17: At target frame. Note that the gripper frame’s position is further
from the desired point directly above the target frame because the positional
tolerance was increased to 5 cm to keep runtime to a reasonable length.

15

gr:Fper_L‘k

base_'ink

Jargetl

Figure 18: Back to home configuration.

The errors for the transpose-Jacobian implementation are summarized in the
table below:

H Desired Frame dgo(s) dgs H

gsty 0.0145 0.0484
gsto 0.0369 0.0500

Table 3: Transpose-Jacobian controller implementation error metrics.

The slightly larger errors exhibited above are consistent with the choice to
slightly increase the positional and angular tolerances for this controller due to
excessive runtime. The tolerance values are discussed in Section 2.3.

5 Extra Task

For our extra task we decided to control the robot to trace the outline of a
Christmas tree. This is an important task in real life scenarios such as the robot
being used for painting and decorating in a commercial setting or applying some
kind of adhesive or welding in an industrial setting, or potentially even hanging
lights on a Christmas tree. In each of these scenarios, the orientation of the
robot is not as important, but the precise positioning is.

To compute the points needed to trace the outline of the tree, we found a
suitable image of the tree and hand picked the corner points for the robot to
travel to, as shown in 19a. We decided to orient the tree in the xz plane starting
at the point [0, 0.3,0]". To do this, we needed to rotate the points by 180 degrees

16

about the y axis, scale the pixels to be in meters, and translate the pixels by the
distance of the first frame to the starting point. We chose a default orientation
that would have the z-axis of the gripper parallel to the y-axis of the world
frame. A screenshot of our results can be seen in 19b.

feretiandc

Frame9 Frame7
FrainelO Frarne6

Fra.nell Frarae5
Frarnel? paseind ral1e4

Fra'nel3 Frarie3
Frar fefw ne2

Frar 1&tainel

(a) Christmas tree frames (b) Christmas tree RVIZ simulation

Figure 19: Extra task: Christmas Tree

6 Contributions

6.1 All

e Collectively spent vast majority of the time on the main file and debugging
all functions. This work was equally split among the team members and
realistically constitutes the most significant contributions by each member.

e Collectively wrote this report

6.2 Spencer Powers

e Wrote computeError.m
e Wrote urdRRTranspose Control.m

e Took screenshots and screen capture videos

17

6.3 Trevor Schwehr
o Wrote filteredInvKin.m

e Completed the extra task

o Wrote findOptHome.m

6.4 Kevin Wang

e Found offsets between tool frame and gripper

References

[1] Ryan Keating. Urb inverse kinematics, 2014.

18

