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1 Problem Formulation

This project focused on optimal trajectory generation and robust feedback con-
trol for the car-like robot shown in Figure 1. The generalized task is moving
between a starting and desired vehicle configuration while avoiding obstacles
and exclusion zones.

Figure 1: State variables and controls of the vehicle.

The equations of motion for the vehicle are as follows:
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where (x, y) denotes the position of the center of the rear axle, θ is the
heading angle, v is the forward velocity, l is the distance between axles, u1 is the
turning angle, and u2 is the forward acceleration. The δ term is random control
noise where the magnitude of each component is bounded by |δi| ≤ kiv (1 +K)
for which ki is a scaling constant determined by a given noise benchmark and
K is the curvature, i.e. K = tan(u1)/l.

For computing collisions with obstacles and exclusion zones, the car body
shape is approximated as two circles of a specified diameter, each centered at
the midpoint of one of the axles.

While the primary goal of this project was to generate and robustly track
ideal trajectories with a nominal amount of injected control noise, the secondary
goal was to test the robustness of the derived control law to varying noise mag-
nitude.

2 Methods

2.1 Optimal Trajectory Generation

The optimal trajectory generation problem can be formulated as finding the
optimal control sequence that minimizes the following trajectory cost while sat-
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isfying given initial conditions and various constraints, including differential
constraints (e.g. the vehicle dynamics) and algebraic constraints (e.g. distance
from obstacles):

J =
1

2
q(tf )

TPfq(tf ) +

∫ tf

t0

1

2

(
qTQq + uTRu

)
(1)

where q = [xyθv]
T

is the state vector and Pf , Q, and R are penalty coef-
ficient matrices that influence the optimization behavior. Differential dynamic
programming (DDP) was used to actually solve the constrained optimization
problem and produce the ideal trajectories. Specifically, 50 solver iterations
were used, the time horizon was set to 15 seconds, Q was set to 0, and Qf and
R were tuned to produce the desired solver behavior. In addition, the turning
angle u1 was constrained between [−45, 45] degrees and forward acceleration u2
was constrained between [−1, 1] m/s2.

2.2 Control Noise Benchmarks

The noise scaling coefficients ki were computed using the following benchmarks.
For u1, a maximum drift of 5o was specified at 60 mph (or 26.8 m/s) and at a
desired turning angle of 45o. Since this noise is added to tan(u1), k1 is computed
via:

k1 =
tan(45)− tan(40)

26.8 ∗ (1 + tan(45)/l)

Similarly, for u2, a maximum drift of 1 m/s2 was specified under the same
driving conditions, and thus k2 is computed via:

k2 =
1

26.8 ∗ (1 + tan(45)/l)

2.3 Feedback Control Law Derivation

The control law u = ψ+ν was derived via backstepping and Lyapunov redesign,
where ψ stabilizes the nominal system and ν is a disturbance rejection term to
handle the injected control noise. Let e = h − hd, where the output h is [x, y].
Let the initial Lyapunov function be V0 = 1

2e
T e. Taking the time derivative,

this yields:

V̇0 = eT ė = eT
(
ḣ− ḣd

)
= eT

([
v cos(θ)
v sin(θ)

]
− ḣd

)
If ḣ was controllable, we could choose to set it to ḣd−k1e where k1 > 0 to make
V̇0 = −k1eT e, which is negative definite and would thus asymptotically stabilize
the error dynamics. However, ḣ is not directly controllable, so define a new error
z = ḣ − (ḣd − k1e). Now define a new Lyapunov function as V = V0 +

1
2z

T z.
Taking the time derivative and manipulating the terms yields the following:
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V̇ = eT ė+ zT ż = eT (z − k1e) + zT ż = −k1eT e+ zT (e+ ż)

Expanding the ż term yields:

V̇ = −k1eT e+ zT
(
e+Rū− ḧd + k1ė

)
where R =

[
−v2sin(θ)/l cos(θ)
v2cos(θ)/l sin(θ)

]
and ū =

[
tan(u1)
u2

]
.

Finally, we can choose to set ū to be:

ū = R−1
(
−e+ ḧd − k1ė− k2z

)
such that V̇ = −k1eT e − k2z

T z, which is negative definite and would thus
asymptotically stabilize both errors around 0. This yields the nominal control
law that stabilizes the noise-free system:

ψ =

[
tan−1(ū1)

ū2

]
Next, the disturbance rejection term ν is derived via Lyapunov redesign.

First, the dynamics can be written in the form q̇ = f(q) + G(q)ū. Second,
the nominal controller ψ has an associated Lyapunov function V . Third, the
noise bound can be expressed as ||δ|| ≤ ρ(t, q) + k0 ||ν||, where in this case
ρ(t, q) = ktotv (1 +K), ktot = ||[k1, k2]||, and k0 = 0.

Let w = GT∇qV . The disturbance rejection term ν can then be computed
via:

ν = −η(t, q) w

||w||
where

η(t, q) ≥ ρ(t, q)

1− k0
= ktotv (1 +K)

To resolve chattering issues that arise when the vehicle is close to the ideal
trajectory and thus ||w|| approaches 0, a piecewise form of ν is used:

ν =

{
−η(t, q) w

||w|| η ||w|| ≥ ϵ

−η2(t, q)wϵ η ||w|| < ϵ

where ϵ is an arbitrarily small constant that defines the radius of a tube
around the ideal trajectory in state space. The controller is only guaranteed to
be asymptotically stable towards the ideal trajectory outside of this tube, but
it has better numerical stability properties inside of the tube and thus close to
the ideal trajectory because it avoids divide-by-zero issues.

This piecewise form of the disturbance rejection term, when combined with
the previously-derived nominal controller, yields the final control law u = ψ+ν.
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3 Example Scenario

Consider the following example scenario. Let q0 = [−6,−4, 0, 0]
T
, qd = [5,−1, 0, 0]

T
,

l = 1, rc = 0.5, tf = 15, Qf = 50 ∗ diag([1, 1, 1, 1]), and R = 4 ∗ diag([1, 1]).
A circular obstacle of radius 1 is centered at po = (1.5,−2.5), and an exclusion
zone boundary line is defined by y = 0.3x − 5.5 that the vehicle must remain
above. The real initial starting condition is q0,noisy = q0 + [0.1, 0.1, 0.1, 0.1]

T
.

The control constraints and noise benchmarks are described in the previous
section.

The optimal trajectory generation starting from the nominal initial condition
with noise-free dynamics and the ideal controls associated with the optimal
trajectory are shown in Figure 2:

Figure 2: Optimal trajectory generation and associated controls. Dashed circles
represent the circles centered on each axle for the collision detection model.

The following figure shows the trajectory tracking process, namely starting
at the noisy initial condition and simulating the evolution of the vehicle using
the derived feedback control law with injected control noise:
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Figure 3: Noisy trajectory tracking using the derived feedback control law.
Dashed circles represent the circles centered on each axle for the collision detec-
tion model.

The performance of the controller is summarized via the following tracking
error plot, and the distance to the nearest obstacle over time is also provided:

Figure 4: Tracking error and distance to nearest obstacle over time.

To test the robustness of the controller to noise, both noise benchmarks were
doubled to 10o and 2 m/s2 and the tracking performance was re-evaluated. The
trajectory tracking and controls are shown in the following figure:

5



Figure 5: Noisy trajectory tracking using the derived feedback control law with
doubled noise benchmarks. Dashed circles represent the circles centered on each
axle for the collision detection model.

The resulting actual controls are slightly noisier, but the tracking itself re-
mains exceptionally good. This is also seen quantitatively in the tracking error
plot below. The distance to the nearest obstacle is also provided to show that
collisions are still avoided over the course of the actual trajectory.

Figure 6: Tracking error and distance to nearest obstacle over time with doubled
noise benchmarks.

4 Conclusion

Differential dynamic programming was successfully leveraged to generate op-
timal trajectories that satisfied given vehicle dynamics and control constraints
while avoiding obstacles and exclusion zones. Backstepping and Lyapunov re-
design were successfully used to derive a feedback control law that exhibits
robustness to bounded control noise that varies as a function of vehicle speed
and curvature.
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