

Development Campaign of an Additively Manufactured, Inductively-Heated Model of a Solid Core Nuclear Thermal Rocket Engine

NERVA Test Firing

Hyperion-1 Single Channel Ohmic Losses Map

USC Viterbi School of Engineering

Test Hardware

<u>Summary:</u> Computational Simulation and Experimental Validation of a Series of Inductively Heated Test Articles as a Subscale Inert Test Bed for a Solid Core Axial-Channel Nuclear Thermal Rocket Engine

Simulation

Modeling and Simulation for Each Test Article

Electromagnetic

- ANSYS Maxwell 3D
- Input current limited by in-house induction heater

Ohmic loss contour

USCViterbi

School of Engineering

<u>Thermal</u>

- ANSYS Transient + Steady State
 Thermal
- Volumetric heating conditions imported via Maxwell ohmic loss map
- Ambient convection conditions

<u>Outputs</u>

 Transient and steady state temperature maps of test article heating without working fluid flow conditions

<u>CFD</u>

- ANSYS FLUENT
- Imports ohmic losses from Maxwell
 model
- Working fluid pressures assigned at inlet and outlet mesh boundaries
- Assumes thermally insulated test articles

<u>Outputs</u>

- Working fluid outlet conditions
- Steady state test article temperature

Backup Slides

Modeling and Simulation for Each Test Article

Electromagnetic

- Prescribed current in/out at coil leads
- Surrounding region assigned as air
- Coil dimensions:
 - 50mm inner ID (for flange clearance)
 - 8mm OD copper tubing
 - 1mm wall thickness
- Steel (generic) assigned to tube body

<u>Thermal</u>

- Assumed free convection coefficient of 10.3 W/(m² K)
 - Adjusted following dry heating tests at a given power level
- Steel (generic) assigned to tube body

<u>CFD</u>

- Inlet mesh: pressure inlet
 - Initial gauge pressure = regulated pressure
- Outlet mesh: pressure outlet
 - Outlet gauge pressure = ambient pressure
- Density-based solver
- GN2 assigned to working fluid volume
- Steel (generic) assigned to tube body

Test Stand P&ID

