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1 Introduction

This work concerns optimal guidance for precision powered landing of launch
vehicles. I chose the title paper[1] because I was specifically looking for a real-
time optimal control method that supports a full 6 DoF vehicle model.

The purpose of this document is to capture what I learned in the process
of implementing the title paper. The accompanying source code can be found
here. The target audience is anyone who finds the paper fascinating and wants
to better understand how to close the gap between the presented theory and
practical application.

Think of this like an annotated version of the original paper. Consequently,
much of the content will be identical to the paper, but I will add or modify
content along the way to in an effort to improve clarity and practicality.

1.1 Notation

I use slightly different notation than the original paper because my original
notes were hand-written and you can’t really differentiate between scalars and
vectors using boldface in real life.

Standard lowercase symbols such as m(t) denote scalars. Symbols with an

arrow above them such as F⃗ (t) denote vectors. Standard uppercase symbols
such as A(t) denote matrices. Fancy F symbols (F) represent coordinate frames.

Any other variants (e.g., ˆ⃗x, Ā, Ã) will be defined as-needed later because they
don’t have generic definitions.

1.2 Convexity

Given that this method revolves around successive convexification, a brief primer
on convexity is in order. I found another work by the same authors [2] help-
ful in understanding convexity in the context of optimization, but I’ll briefly
summarize the relevant components below (largely directly from that source).

Let’s start with the concepts of convex sets and convex functions. Figure 1
is from [2] and illustrates these concepts with notional examples. Convex sets
are important because they are interchangeable with convex constraints, which
we’ll use extensively in later sections. By definition, C ⊆ Rn is a convex set if
and only if it contains the line segment connecting any two of its points:

x⃗, y⃗ ∈ C ⇒ [x⃗, y⃗]θ ∈ C (1)

for all θ ∈ [0, 1], where [x⃗, y⃗]θ
.
= θx⃗+ (1− θ)y⃗.

Using the same θ machinery as above, a function f : Rn → R is convex if
and only if dom(f) is a convex set and evaluating f at any point in its domain
between x⃗ and y⃗ parameterized by θ yields a value under or on the associated
value on the line segment connecting f(x⃗) and f(y⃗):

x⃗, y⃗ ∈ dom(f)⇒ f ([x⃗, y⃗]θ) ≤ [f(x⃗), f(y⃗)]θ (2)
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Figure 1: Illustration from [2] of (a) a notional convex set and (b) a convex
function. In both cases, the variable θ ∈ [0, 1] generates a line segment between
two points. The epigraph epi f ⊆ Rn × R is the set of points which lie above
the function and is thus a convex set itself.

Putting these two concepts together, we can now formally describe a convex
optimization problem, which is central to the title paper. A convex optimization
problem is simply the minimization of a convex function subject to a number
of convex constraints that act to restrict the search space:

min
x⃗∈Rn

f(x⃗) (3a)

s.t. gi(x⃗) ≤ 0, i = 1, . . . , nineq (3b)

hj(x⃗) = 0, j = 1, . . . , neq (3c)

where f(x⃗) : Rn → R is a convex cost function, gi(x⃗) : Rn → R are convex
inequality constraints, and hj(x⃗) : Rn → R are affine equality constraints. Note
that affine just means that the function is linear in x and can have a constant
offset.

One important property of convex sets is that convexity is preserved under
set intersection. Consequently, 3b and 3c combine to form a single convex set of
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feasible values that the optimization decision variable x can take. Convex func-
tions also have many properties that make their optimization quite tractable,
but for now let’s just say that off-the-shelf solvers are really good at solving
convex optimization problems.

2 Original Problem Formulation

We will now building up the original continuous-time, non-convex problem de-
scription. There will be two coordinate frames of interest going forward:

1. FI : An inertially-fixed Up-East-North reference frame with its origin lo-
cated at the landing site.

2. FB: A body-fixed frame centered at the vehicle center-of-mass, with its
X-axis pointing along the vertical axis of the vehicle (i.e., along the thrust
vector when the engine gimbal angle is zero), its Y-axis pointing out the
side of the vehicle, and its Z-axis completing the right-handed system.

2.1 Kinematics and Dynamics

We treat the vehicle as a rigid body subject to constant gravitational acceler-
ation g⃗I ∈ R3 and negligible aerodynamic forces. The vehicle is assumed to
actuate a single gimbaled rocket engine to generate a thrust vector within a
feasible range of magnitudes and gimbal angles.

We assume the vehicle depletes its massm(t) ∈ R++ at a rate proportional to

the magnitude of the commanded thrust vector T⃗B(t) ∈ R3, which is expressed
in FB coordinates. For tractability, we assume that the inertia tensor and the
position of the center-of-mass are constant despite the depletion of mass. The
proportionality constant αṁ is given in terms of the vacuum-specific-impulse
Isp (an exception to the aforementioned notational rules) and Earth’s standard
gravity constant g0 as follows:

αṁ
.
=

1

Ispg0
(4)

We can now write our mass depletion dynamics in the following form:

ṁ(t) = −αṁ

∥∥∥T⃗B(t)
∥∥∥
2

(5)

We express the position, velocity, and force acting on the vehicle in FI
coordinates and write them as r⃗I , v⃗I , and F⃗I , respectively. We can thus write
the vehicle’s translational dynamics as:

˙⃗rI(t) = v⃗I(t) (6)

˙⃗vI(t) =
1

m(t)
F⃗I(t) + g⃗I (7)
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We use unit quaternions to parameterize the attitude of FB relative to FI ,
and denote them by q⃗B/I(t) ∈ S3. This paper uses the leading scalar element

convention. Let us define their elements as q⃗B/I(t)
.
= [q0 q1 q2 q3]

T
.

The direction cosine matrix (DCM) that encodes the attitude transformation
from FI to FB is denoted by CB/I(t) ∈ SO(3), where CB/I(t) is related to
q⃗B/I(t) through the following relation:

CB/I =

1− 2(q22 + q23) 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) 1− 2(q21 + q23) 2(q2q3 + q0q1)
2(q1q3 + q0q2) 2(q2q3 − q0q1) 1− 2(q21 + q22)

 (8)

This was one initial point of confusion because if you go to the Wikipedia
entry discussing deriving the rotation matrix from a given quaternion, you get
the transpose of the above matrix. The same Wikipedia page discourages the
use of this particular convention, but I wanted to stay reasonably true to the
original paper’s theory, so I kept it in my implementation.

Since CB/I(t) ∈ SO(3), we can write the inverse transformation from FB to

FI as CI/B = C−1
B/I = CT

B/I . We can now update our translational dynamics

(7) to use the vehicle thrust vector in place of the inertial force vector, as the
former is what we’ll actually be controlling:

˙⃗vI(t) =
1

m(t)
CI/B(t)T⃗B(t) + g⃗I (9)

We use ω⃗B(t) ∈ R3 to denote the angular velocity vector of FB relative to

FI , expressed in FB coordinates. Additionally, for some ξ⃗ ∈ R3, we define the
skew-symmetric matrices ξ⃗∧ and Ω(ξ⃗) as follows:

ξ⃗∧ =

 0 −ξz ξy
ξz 0 −ξx
−ξy ξx 0

 (10)

Ω(ξ⃗) =


0 −ξx ξy −ξz
ξx 0 ξz −ξy
ξy −ξz 0 ξx
ξz ξy −ξx 0

 (11)

We denote the torque acting on the vehicle as M⃗B(t) ∈ R3, and the inertia
tensor of the vehicle in FB coordinates as JB. Based on our earlier assumption
that the center of mass does not move, it follows that the moment arm from
the center of mass to the gimbal point of the engine is constant. We denote this
constant position vector in FB coordinates as r⃗T,B ∈ R3. It then follows that

the body-frame torque is just MB(t) = r⃗∧T,BT⃗B(t) = r⃗T,B × T⃗B(t). We can then
finally write the quaternion kinematics and attitude dynamics as follows:

˙⃗qB/I(t) =
1

2
Ω(ω⃗B(t))q⃗B/I(t) (12)
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JBω̇B(t) = r⃗∧T,BT⃗B(t)− ω⃗∧
B(t)JBω⃗B(t) (13)

Let us define our complete vehicle state vector x⃗ ∈ R14 as:

x⃗(t)
.
=

[
m(t) r⃗TI (t) v⃗

T
I (t) q⃗

T
B/I(t) ω⃗

T
B (t)

]T
(14)

As a practical note, we’ll later need to write our full nonlinear dynamics in
the form ˙⃗x = f(x⃗, u⃗). We can immediately use Equations 5, 6, 9, and 12, but
we’ll have to left-multiply both sides of 13 by J−1

B to leave only ω̇B(t) on the
left-hand side:

ω̇B(t) = J−1
B

[
r⃗∧T,BT⃗B(t)− ω⃗∧

B(t)JBω⃗B(t)
]

(15)

2.2 State Constraints

The first implied state constraint is that the kinematics and dynamics in the
previous section are obeyed. We’ll need to convexify this constraint later, as it’s
an equality constraint and it clearly doesn’t fit the affine requirement described
by 3c.

We additionally restrict the mass of the vehicle to remain above the dry
mass mdry using the following convex constraint:

mdry ≤ m(t) (16)

The path of the vehicle is also restricted to lie within an upward-facing
glide-slope cone that makes an angle γgs ∈ [0◦, 90◦) with the horizontal and is
centered at the origin of FI . This can be expressed with the following convex
constraint:

e⃗1 · r⃗I(t) ≥ tan γgs
∥∥HT

23r⃗I(t)
∥∥
2

(17)

where e⃗i is the unit vector along the ith axis and H23
.
= [e⃗2 e⃗3]. If we look

at the expression as an equality expression, we can see from trigonometry that
it just restricts the altitude of some point r⃗I(t) to exist on the surface of the
inverted cone; the norm expression on the right-hand side is just a compact way
of getting the Euclidean distance to the origin of FI on the East-North plane.
By making it an inequality, we allow r⃗I(t) to exist on the inside of the inverted
cone in addition to its surface.

We define the tilt angle of the vehicle θ(t) as the angle between the X-axes
of FB and FI :

cos θ(t) = e⃗1 · CI/B(t)e⃗1 = 1− 2
(
q22(t) + q23(t)

)
(18)

To avoid excessive tilt angles in the trajectory, we limit θ(t) to a maximum
value of θmax. If we immerse our quaternion q⃗B/I in R4, we can impose this tilt
angle limit through the following convex constraint:
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cos θmax ≤ 1− 2
(
q22(t) + q23(t)

)
(19)

We can write this in a more compact form as follows:

cos θmax ≤ 1− 2
∣∣Hq q⃗B/I

∥∥2
2

(20a)

Hq
.
=

[
0 0 1 0
0 0 0 1

]
(20b)

We also limit the vehicle’s body angular rates using the following convex
constraint:

∥ω⃗B(t)∥2 ≤ ωmax (21)

Unlike the paper, I also added a quaternion magnitude constraint of unity
because the direction cosine matrix used in the dynamics is strictly defined for
unit quaternions. This will require more work later because it clearly does not
fit the affine equality constraint formulation in 3.

2.3 Control Constraints

We’ll assume that the engine is throttleable, but this particular problem formu-
lation requires that the singular engine is already restarted at the beginning of
the problem. It also implies that we can’t shut it down and restart it later. The
result is that in addition to the natural upper bound on the thrust produced by
the engine, we have a positive lower bound as well:

0 < Tmin ≤
∥∥∥T⃗B(t)

∥∥∥
2
≤ Tmax (22)

The upper bound is convex, but the lower bound is not. You can intuitively
see why if you picture the constraint in 3D space. The upper bound just defines
a ball around the origin that we have to exist within (or on its surface), and
naturally a ball contains every line segment connecting points within it. The
lower bound removes a smaller ball around the origin from the valid set, which
means any line segment between points on opposite sides of the inner ball will
no longer be contained within the valid set.

Our gimbal mechanism also has a maximum gimbal angle of δmax ∈ [0◦, 90◦),
which constrains the possible directions of our thrust vector in body frame via
the following convex constraint:

cos δmax

∥∥∥T⃗B(t)
∥∥∥
2
≤ e⃗1 · T⃗B(t) (23)

2.4 Boundary Conditions

For initial conditions, the original paper constrains the vehicle mass, position,
velocity, and angular rate to match some known conditions. Surprisingly, they
leave the initial attitude unconstrained. My implementation also constrains the
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initial attitude because presumably if this were ever deployed on a vehicle, we’d
have some estimate of our current attitude.

For terminal conditions, the original paper constrains the vehicle position (all
zeros in FI), velocity (small), attitude (aligned with FI), and angular rates (all
zeros), as well as the requiring that the final thrust is aligned with the vehicle’s
vertical axis. I opted for a terminal tilt constraint instead of requiring that the
frames be exactly aligned, as that felt more realistic; it shouldn’t matter if the
vehicle is rotated about its vertical axis, and any landing mechanism should be
able to tolerate a couple degrees of tilt.

As a practical note, I constructed the solver interface around the idea of
continuously re-solving the optimal control problem during descent. The config
file defines the terminal conditions, as those conditions shouldn’t really change.
The only public method takes in a current vehicle state vector and solves the
optimal control problem, which should be a nice interface for using this library
in an MPC-like manner.

2.5 Problem Statement

We can now write our continuous-time non-convex optimization problem:

Problem 1: Continuous-Time Non-Convex Free-Final-Time Problem

min
tf ,T⃗B(t)

tf

subject to:

Dynamics:

ṁ(t) = −αṁ

∥∥∥T⃗B

∥∥∥
2

˙⃗rI(t) = v⃗I(t)

˙⃗vI(t) =
1

m(t)
CI/B(t)T⃗B(t) + g⃗I

˙⃗qB/I(t) =
1

2
Ω(ω⃗B(t))q⃗B/I(t)

ω̇B(t) = J−1
B

[
r⃗∧T,BT⃗B(t)− ω⃗∧

B(t)JBω⃗B(t)
]

State Constraints:

mdry ≤ m(t)

tan γgs
∥∥HT

23r⃗I(t)
∥∥
2
≤ e⃗1 · r⃗I(t)

cos θmax ≤ 1− 2
(
q22(t) + q23(t)

)
∥ω⃗B(t)∥2 ≤ ωmax∥∥q⃗B/I(t)

∥∥
2
= 1

Control Constraints:
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0 < Tmin ≤
∥∥∥T⃗B(t)

∥∥∥
2
≤ Tmax

cos δmax

∥∥∥T⃗B(t)
∥∥∥
2
≤ e⃗1 · T⃗B(t)

Boundary Conditions:

m(0) = mwet

r⃗I(0) = r⃗I,i

v⃗I(0) = v⃗I,i

q⃗B/I(0) = q⃗B/I,i

ω⃗B(0) = ω⃗B,i

r⃗I(tf ) = 0⃗

v⃗I(tf ) = v⃗I,f

cos θmax,f ≤ 1− 2
(
q22(tf ) + q23(tf )

)
ω⃗B(0) = 0⃗

e⃗2 · T⃗B = e⃗3 · T⃗B = 0

To reiterate, this formulation differs from the original paper’s problem for-
mulation in a couple ways; I constrain initial attitude, and I relax the terminal
attitude constraint to be a max tilt constraint instead of rigidly aligning with
the inertial frame, both of which seemed more realistic to me.

3 Convex Formulation

3.1 Looking Ahead

Let’s first give a brief overview of what we plan to do with the convexified prob-
lem. The original problem is so non-convex that just solving a convexified ver-
sion of the problem once will almost certainly not yield a solution that satisfies
the original constraints. The fundamental premise of the successive convexifi-
cation algorithm repeatedly solves the convexified problem, and the converged
solution should satisfy the original dynamics and constraints of Problem 1. The
exact mechanisms that drive the solution towards a feasible solution will be
discussed in Section 3.4.

We will be specifically formulating the convex sub-problem as a Second-
Order Cone Problem (SOCP). This imposes additional limitations on the forms
of the cost function and constraints, but it allows us to use specific SOCP solvers
such as ECOS to efficiently solve each iteration of the successive convexification
algorithm.
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3.2 Linearization

3.2.1 Kinematics and Dynamics

To get the original kinematics and dynamics to fit into a convex optimization
framework, step one is linearizing them. We already defined the total state
vector in 14, but just for notational consistency let’s define the total system
control vector as u⃗(t)

.
= T⃗B(t).

We begin by expressing the original kinematics and dynamics as a nonlinear
vector-valued function f : R14 × R3 → R14 of the state and control vectors:

d

dt
x⃗(t) = f (x⃗(t), u⃗(t))

.
=

[
ṁ(t) ˙⃗rTI (t)

˙⃗vTI (t)
˙⃗qTB/I(t)

˙⃗ωT
B (t)

]T
(24)

where the individual terms can be substituted with Eqs. 5, 6, 9, 12, and 15.
Recall that we need to keep the final time free. To do this, let’s express Eq.

24 in terms of a normalized time τ ∈ [0, 1]. You can think of this normalized
dimensionless time as a function of standard time: τ(t) = t

tf
. Naturally, we

can also go the other direction, i.e., t(τ) = τtf . We can now define the di-
lation coefficient, an important quantity that will be at the heart of the final
optimization:

σ
.
=

(
dτ

dt

)−1

= tf (25)

We can then use chain rule to rewrite Eq. 24 in terms of our normalized
time τ and dilation coefficient σ:

˙⃗x(τ)
.
=

d

dτ
x⃗(τ) = σf(x⃗(τ), u⃗(τ)) (26)

We now have our dynamics in a fixed-final-time setting, but they still need
to be linearized to fit into the convex optimization framework. Let’s replace
the right-hand-side with a first-order Taylor series approximation evaluated at
a reference state trajectory ˆ⃗x(τ), a reference control trajectory ˆ⃗u(τ), and a
reference dilation coefficient σ̂:

˙⃗x(τ) = A(τ)x⃗(τ) +B(τ)u⃗(τ) + Σ(τ)σ + z⃗(τ) (27a)

A(τ)
.
= σ̂ · ∂

∂x⃗
f(x⃗, u⃗)

∣∣∣∣
ˆ⃗x(τ),ˆ⃗u(τ)

(27b)

B(τ)
.
= σ̂ · ∂

∂u⃗
f(x⃗, u⃗)

∣∣∣∣
ˆ⃗x(τ),ˆ⃗u(τ)

(27c)

Σ(τ)
.
= f(ˆ⃗x(τ), ˆ⃗u(τ)) (27d)

z⃗(τ)
.
= −A(τ)ˆ⃗x(τ)−B(τ)ˆ⃗u(τ) (27e)

3.2.2 Thrust Lower Bound Constraint

The thrust lower bound constraint in Problem 1 is non-convex, so we’ll linearize
it. First, define function g : R3 → R as follows:

g (u⃗(τ))
.
= Tmin − ∥u⃗(τ)∥2 ≤ 0 (28)
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This just mimics the classic inequality constraint form that we eventually
want. We can then replace the left-hand side with a first-order Taylor series
approximation about the reference control trajectory ˆ⃗u(τ):

g (u⃗(τ)) ≈ g
(
ˆ⃗u(τ)

)
+

∂g (u⃗(τ))

∂u⃗

∣∣∣∣
ˆ⃗u(τ)

(
u⃗(τ)− ˆ⃗u(τ)

)

= Tmin −
∥∥∥ˆ⃗u(τ)∥∥∥

2
+

− ˆ⃗uT (τ)∥∥∥ˆ⃗u(τ)∥∥∥
2

(
u⃗(τ)− ˆ⃗u(τ)

)

which brings us to our linearized constraint form:

Tmin −
ˆ⃗uT (τ)u⃗(τ)∥∥∥ˆ⃗u(τ)∥∥∥

2

≤ 0 (29)

3.2.3 Quaternion Magnitude Constraint

The quaternion unity magnitude constraint clearly does not fit the affine equal-
ity constraint form in 3. We’ll replace it with two inequality constraints, one
bounding the magnitude from below and one bounding the magnitude from
above, both of which use 1 as the bounding value. Just like the thrust mag-
nitude constraints, the upper bound constraint is convex, but the lower bound
is not. We’ll follow the exact same procedure as above to linearize the lower
bound constraint. This yields the following linearized form of the unity magni-
tude lower bound constraint:

1− ˆ⃗qTB/I(τ)q⃗B/I(τ) ≤ 0 (30)

You might immediately notice that this is a bit problematic. Since both the
reference quaternion and the current quaternion have unit magnitude, the left-
hand side can be 1 only if they are exactly the same, and it can never actually
be less than zero. If we left this as-is, the quaternions would effectively never be
allowed to change from the reference trajectory. To get around this, I added a
tolerance ϵq and thereby allow the dot product of the quaternions to be slightly
less than 1 in order to satisfy the constraint:

(1− ϵq)− ˆ⃗qTB/I(τ)q⃗B/I(τ) ≤ 0 (31)

3.3 Discretization

We have removed the free final time nature of the problem and linearized it,
but it’s still continuous in time. In order for us to fit it into a finite-dimensional
parameter optimization problem, we discretize the trajectory into K evenly-
distributed points. We perform the discretization with respect to normalized
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trajectory time τ . For convenience, we define the following two sets:

K .
= {0, 1, . . . , K − 2, K − 1}

K̄ .
= {0, 1, . . . , K − 3, K − 2}

Given τ ’s definition, we can define the normalized time at discretization index
k as:

τk
.
=

k

K − 1
, ∀k ∈ K (32)

To preserve more feasibility, we assume a first-order-hold on the control over
each time step. Thus, over the interval τ ∈ [τk, τk+1], we can express u⃗(τ) in
terms of u⃗k

.
= u⃗(τk) and u⃗k+1

.
= u⃗(τk+1) as follows:

u⃗(τ) = αk(τ)u⃗k + βk(τ)u⃗k+1 , τ ∈ [τk, τk+1] ,∀k ∈ K̄ (33a)

αk(τ) =
τk+1 − τ

τk+1 − τk
(33b)

βk(τ) =
τ − τk

τk+1 − τk
(33c)

Now we come to the problem of discretizing the dynamics. We use ΦA(τk+1, τk)
to denote the state transition matrix that describes the zero-input evolution
from x⃗k to x⃗k+1. We’re going to use the state transition matrix in the following
derivations because it allows us to encapsulate the dynamics constraint between
two discretization points separated by a potentially significant time window.

Recall that the solution for a linear time-varying system with a single input
u⃗ can be expressed using the state transition matrix as follows (using generic
notation):

x⃗(t) = Φ(t, t0)x⃗(t0) +

∫ t

t0

Φ(t, τ)B(τ)u⃗(τ)dτ (34)

Applying this solution form to our problem immediately yields:

x⃗k+1 =ΦA(τk+1, τk)x⃗(τk) + (35)∫ τk+1

τk

ΦA(τk+1, ξ) [B(ξ)αk(ξ)u⃗k +B(ξ)βk(ξ)u⃗k+1 +Σ(ξ)σ + z⃗(ξ)] dξ

(36)
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which we can now rewrite in the form presented in the paper:

x⃗k+1 = Ākx⃗k + B̄ku⃗k + C̄ku⃗k+1 + Σ̄kσ + ¯⃗zk (37a)

Āk
.
= ΦA(τk+1, τk) (37b)

B̄k
.
=

∫ τk+1

τk

ΦA(τk+1, ξ)B(ξ)αk(ξ)dξ (37c)

C̄k
.
=

∫ τk+1

τk

ΦA(τk+1, ξ)B(ξ)βk(ξ)dξ (37d)

Σ̄k
.
=

∫ τk+1

τk

ΦA(τk+1, ξ)Σ(ξ)dξ (37e)

¯⃗zk
.
=

∫ τk+1

τk

ΦA(τk+1, ξ)z⃗(ξ)dξ (37f)

How do you actually calculate the bar quantities (Eqs. 37b through 37f)?
The paper does not go into this, but Michael Szmuk’s doctoral thesis[3] gives us
a hint, and Sven Niederberger’s SCpp repo[4] provides an example. Buckle up.

Let’s start with some important properties of the generic state transition
matrix:

Φ(t1, t0)
−1 = Φ(t0, t1) (38a)

Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0) (38b)

∂

∂t
Φ(t, t0) = A(t)Φ(t, t0) (38c)

Using Properties 38a and 38b, we can write:

ΦA(τk+1, ξ) = ΦA(τk+1, τk)ΦA(τk, ξ)

= ΦA(τk+1, τk)ΦA(ξ, τk)
−1 (39)

The left-hand side is the term that shows up in the integrands of Eqs. 37b
through 37f. The first term on the right-hand side is not a function of the
integration variable ξ, which means we can pull it outside of the integral. The
second term on the right-hand side now has the integration variable as the first
argument, which means it’s in the correct order to leverage property 38c.

We’re going to need to use an integrator to compute the definite integrals in
Eqs. 37c through 37f. Eq. 39 allows us to define some intermediate quantities
that we can actually feed to an integrator:

12



B̃k
.
=

∫ τk+1

τk

ΦA(ξ, τk)
−1B(ξ)αk(ξ)dξ (40a)

C̃k
.
=

∫ τk+1

τk

ΦA(ξ, τk)
−1B(ξ)βk(ξ)dξ (40b)

Σ̃k
.
=

∫ τk+1

τk

ΦA(ξ, τk)
−1Σ(ξ)dξ (40c)

˜⃗zk
.
=

∫ τk+1

τk

ΦA(ξ, τk)
−1z⃗(ξ)dξ (40d)

The complete matrix that we’re going to feed to the integrator is:

V =

[
x⃗(τ) ΦA(τ, τk)

∂B̃k

∂τ

∂C̃k

∂τ

∂Σ̃k

∂τ

∂ ˜⃗zk
∂τ

]
∈ R14×23 (41)

where we can get the relevant sections of dV
dτ from the full nonlinear dynamics,

Property 38c, and the integrands of the above definitions of the tilde quantities,
respectively.

At the beginning of every discrete segment, we initialize this V matrix
to set the first column to be x⃗k, the ΦA(τ, τk) block to be the identity ma-
trix, and the rest of the elements are zero. Recall that the quantities in Eqs.
37b through 37f all implicitly use the reference trajectory information. This
means that inside the integrator, as we’re integrating V over a single dis-
cretization step, we’ll need to evaluate the full nonlinear dynamics f and its
partial derivatives along the reference trajectory. This is why we drag x⃗(τ)
through the integration process; by starting at x⃗k, computing u⃗(τ) via Eq.
33a, and using the full nonlinear dynamics, we can always evaluate f , A,
and B given that first column’s current value and the computed u⃗(τ), then
use those quantities to populate the derivative information for all of the other
blocks in V . Honestly this is easier to understand by looking at the definition
of DiscreteLinearizedVehicleIntegrator::operator() in the source code
linked in the introduction.

Once we integrate dV
dτ from τk to τk+1, the values in the ΦA(τ, τk) block

will yield ΦA(τk+1, τk) = Āk, and every block after that yields quantities 40a
through 40d. However, we’re not done yet, because quantities 40a through 40d
all need to be left-multiplied by ΦA(τk+1, τk) to yield quantities 37c through
37f. This now gives us all of the quantities required to enforce the discrete
linear dynamics (Eq. 37a) at each discretization point. The rest of the state
and control constraints are just enforced as-is at each discretization point.

3.4 Successive Convexification

In order for successive convexification to work, we must ensure that the prob-
lem remains bounded and feasible throughout the convergence process. Section
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3.4.1 will address keeping the problem bounded (meaning the costs don’t blow
up), and Section 3.4.2 will address ensuring the solution is feasible (meaning it
satisfies the constraints).

3.4.1 Trust Regions

The linearization of an iterate can result in constraints that admit an unbounded
cost. We mitigate the possibility of unbounded solutions in each sub-problem by
augmenting the cost function with terms that serve as soft trust regions defined
around the previous iterate. To do so, we first define the relative quantities
shown below:

δx⃗i
k

.
= x⃗i

k − x⃗i−1
k , ∀k ∈ K (42a)

δu⃗i
k

.
= u⃗i

k − u⃗i−1
k , ∀k ∈ K (42b)

δσi .
= σi − σi−1 (42c)

where the i superscript denotes the ith iterate. Then, defining
¯⃗
∆i ∈ RK

+ and
∆i

σ ∈ R+, we impose the following constraints:

δx⃗i
k · δx⃗i

k + δu⃗i
k · δu⃗i

k ≤ e⃗k ·
¯⃗
∆i (43a)

δσi · δσi ≤ ∆i
σ (43b)

We can then use these bounds to add the following term to our cost function:

ci∆
.
= wi

∆

∥∥∥ ¯⃗∆i
∥∥∥
2
+ w∆σ

∥∥∆i
σ

∥∥
1

(44)

The intuition here is straightforward. Recall that the linearization is performed
around the reference trajectory, which is calculated between each discrete seg-
ment by starting with state ˆ⃗xk and numerically integrating over the interval
τ ∈ [τk, τk+1] using reference controls generated via Eq. 33a. Given that the
original problem is highly nonlinear, the linearization will only be reasonably
valid in a small region around the reference trajectory, so we want to penalize
the solver from straying too far from the last iterate.

I hit a couple practical hurdles with the above original formulation. First,
the point of this paper is to convert the original optimization problem into a
sequence of SOCPs that can be efficiently handled by dedicated SOCP solvers.
Inequality constraints for SOCPs can be either linear in the optimization vari-
ables or in the 2-norm form of ∥Aix⃗+ bi∥2. These new constraints are quadratic
in the optimization variables. I opted to take the square root of both sides of
Eq. 43a to get around this. Also, because we only care about the 1-norm of
the ∆i

σ term, I opted to skip the square root modification and instead just di-
rectly penalize the absolute value of δσi. Both of these modifications inherently
change the problem and thus require different weights in the final cost function
compared to the original paper.
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Also, the cost function of an SOCP must be linear in the optimization vari-
ables. Consequently, the new cost term (Eq. 44) must be modified. To get
around this, I added a couple new optimization variables, ∆̄norm ∈ R+ and
∆σ,abs ∈ R+, along with their associated constraints:

∥∥∥ ¯⃗∆i
∥∥∥
2
≤ ∆̄norm (45a)

−∆σ,abs ≤ δσi ≤ ∆σ,abs (45b)

0 ≤ ∆σ,abs (45c)

We can now update our new cost term to be SOCP-compatible:

ci∆,aug
.
= wi

∆∆̄norm + w∆σ∆σ,abs (46)

As a practical note, notice how wi
∆ has an i superscript. The original paper

does not discuss this, but I’m guessing that means that they use some kind of
gain scheduling over successive convexification iterations. I ended up doing a
very simple schedule where I allow the wν weight (discussed in the next sec-
tion) to dominate for the first few iterations, thereby incentivizing the solver
to produce some feasible solution, after which point I scale up the wν weight
for the final iterations. I found that this was actually necessary because the
default weight for wν is so large in the paper that the trust region cost was
never penalized sufficiently heavily to dip below the convergence threshold.

3.4.2 Virtual Controls

Artificial infeasibility can be encountered during the convergence process when
the linearization is not favorable for feasibility. For example, if the problem is
linearized about an unrealistically short time-of-flight, the linearized equations
will likely not admit a feasible solution. Artificial infeasibility is encountered
very frequently during the first few iterations of a typical successive convexifi-
cation sequence, and is largely due to initiating the process with a poor initial
guess. To mitigate this, we introduce a virtual control term ν⃗ik ∈ R14, and
add it to our discrete linearized dynamics to yield our final convex sub-problem
dynamics:

x⃗k+1 = Ākx⃗k + B̄ku⃗k + C̄ku⃗k+1 + Σ̄kσ + ¯⃗zk + ν⃗ik , ∀k ∈ K̄ (47)

For notational convenience, we concatenate the ν⃗ik vectors into a larger vector
¯⃗νi ∈ R14(K−1), and use it to define a new cost term as follows:

ciν
.
= wν

∥∥¯⃗νik∥∥1 (48)

The intuition here is that ν⃗ik acts directly on the state variables when neces-
sary to prevent artificial infeasibility, and selecting a large wν heavily penalizes
the solver from relying on these virtual controls to maintain feasibility. When
ciν is negligible, this directly implies that the solution is dynamically feasible.
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Since the presented cost term uses the 1-norm of the concatenated virtual
controls, this requires us to again modify the formulation to be compatible with
the SOCP format. I opted to stack the virtual control vectors side-by-side to
make a matrix ν̄ ∈ R14×(K−1), then introduced another auxiliary optimization
variable ν̄abs ∈ R14×(K−1) and its associated constraints:

ν̄
.
=

[
ν⃗i0 , . . . , ν⃗

i
K−2

]
(49a)

−ν̄abs ≤ ν̄ ≤ ν̄abs (49b)

0 ≤ ν̄abs (49c)

Now we can write our SOCP-compatible virtual control cost term as follows:

ciν,aug
.
= wν

m∑
i=1

n∑
j=1

ν̄abs,i,j (50)

3.5 Miscellaneous Constraints

The max tilt constraint (Eq. 20a) is convex, but it doesn’t fit nicely into the
SOCP framework because it is quadratic in the optimization variables. By
shuffling terms around and taking the square root, we can obtain the following
SOCP-compatible form:

∣∣Hq q⃗B/I
∥∥
2
≤

√
1− cos θmax

2
(51)

3.6 Problem Statement

We are now ready to summarize the convex sub-problem that will be solved
repeatedly by the successive convexification algorithm. By virtue of the time
normalization introduced in Section 3.2.1, this problem can be viewed as a fixed-
final-time optimization problem due to the fact that the final normalized time is
always equal to unity. As a consequence, tf in Problem 1 is substituted with σi.
Note that the i superscript denotes the ith iterate of the overarching successive
convexification loop.

Problem 2: Convex Discrete-Time Fixed-Final-Time Problem

min
σi,u⃗i

k

wσσ
i + wν ν̄

i
abs + wi

∆∆̄
i
norm + w∆σ

∆i
σ,abs

subject to:

Dynamics:

x⃗ i
k+1 = Āi

kx⃗
i
k + B̄i

ku⃗
i
k + C̄i

ku⃗
i
k+1 + Σ̄i

kσ
i + ¯⃗z i

k + ν⃗ i
k

State Constraints:

mdry ≤ mi
k
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tan γgs
∥∥HT

23r⃗
i
I,k

∥∥
2
≤ e⃗1 · r⃗ i

I,k∥∥∥Hq q⃗
i
B/I,k

∥∥∥
2
≤

√
1− cos θmax

2∥∥ω⃗i
B,k

∥∥
2
≤ ωmax∥∥∥q⃗ i

B/I,k

∥∥∥
2
≤ 1

(1− ϵq)− ˆ⃗q i,T
B/I,kq⃗

i
B/I,k ≤ 0

Control Constraints:

Tmin −
ˆ⃗u i,T
k u⃗i

k∥∥∥ˆ⃗ui
k

∥∥∥
2

≤ 0

∥∥u⃗i
k

∥∥
2
≤ Tmax

cos δmax

∥∥u⃗i
k

∥∥
2
≤ e⃗1 · u⃗i

k

Boundary Conditions:

mi
0 = mwet

r⃗ i
I,0 = r⃗I,i

v⃗ i
I,0 = v⃗I,i

q⃗ i
B/I,0 = q⃗B/I,i

ω⃗ i
B,0 = ω⃗B,i

r⃗ i
I,K−1 = 0⃗

v⃗ i
I,K−1 = v⃗I,f∥∥∥Hq q⃗

i
B/I,K−1

∥∥∥
2
≤

√
1− cos θmax,f

2

ω⃗ i
B,K−1 = 0⃗

e⃗2 · u⃗i
K−1 = e⃗3 · u⃗i

K−1 = 0

Auxiliary Constraints:√
δx⃗i

k · δx⃗i
k + δu⃗i

k · δu⃗i
k ≤ e⃗k ·

¯⃗
∆i∥∥∥ ¯⃗∆i

∥∥∥
2
≤ ∆̄norm

−∆σ,abs ≤ δσi ≤ ∆σ,abs

0 ≤ ∆σ,abs

− ν̄abs ≤ ν̄ ≤ ν̄abs

0 ≤ ν̄abs
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4 Successive Convexification Algorithm

There are really two parts to the successive convexification algorith presented in
the original paper. Since the technique relies on linearizing around a previous
iterate, this means we’ll need to define how to initialize the problem, i.e., how
to define the first reference trajectory. Finally, we’ll walk through the core loop
that actually solves the problem in an iterative manner until convergence.

4.1 Initialization

One of the benefits of this paper’s approach is that the initial guess doesn’t
have to be dynamically feasible. This allows us to define a simple initialization
approach that practically just uses linear interpolation:

Algorithm 1 Initialization

Compute reference trajectory:
for k ∈ K do
α1 ← K−1−k

K−1

α2 ← k
K−1

m0
k ← α1mwet + α2mdry

r⃗ 0
I,k ← α1r⃗I,i ▷ No α2 term because r⃗I,f = 0⃗

v⃗ 0
I,k ← α1v⃗I,i + α2v⃗I,f
q⃗ 0
B/I,k ← slerp(q⃗B/I,i, qid, α2) ▷ Spherical interpolation, qid

.
= [1 , 0 , 0 , 0]T

ω⃗0
B,k = 0⃗

x⃗ 0
k ←

[
mk r⃗ 0,T

I,k v⃗ 0,T
I,k q⃗ 0,T

B/I,k ω⃗0,T
B,k

]T
u⃗ 0
k ← −m0

kCB/I g⃗I ▷ Only supports current weight
end for
σ0 ← tf,guess
Compute discrete dynamics quantities:

for k ∈ K̄ do
Compute Ā0

k, B̄
0
k, C̄

0
k , Σ̄

0
k, and

¯⃗z 0
k using method at end of Section 3.3

end for

4.2 Core Algorithm

Once we have our first guesses for the discrete states, controls, and dilation
coefficient, we can begin the core successive convexification loop described below:
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Algorithm 2 Successive Convexification Loop

for i ∈ {1 , Nmax} do
Solve Problem 2 using x⃗ i−1

k , u⃗ i−1
k , σi−1, Āi−1

k , B̄i−1
k , C̄i−1

k , Σ̄i−1
k , ¯⃗z i−1

k

Store newly-computed x⃗ i
k , u⃗

i
k , σ

i

if
∥∥∆̄i

∥∥
2
≤ ∆tol and

∥∥ν̄i∥∥
1
≤ νtol then

Exit
else

Compute Ā0
k, B̄

0
k, C̄

0
k , Σ̄

0
k, and

¯⃗z 0
k using method at end of Sec. 3.3

Increment i, return to top of loop
end if

end for

5 Demonstration

I provided a few demonstration cases in demo.cpp, namely a simple vertical
landing case, an in-plane maneuver requiring a 90◦ turn, and a more complex
out-of-plane maneuver requiring a twisting motion in 3D space. I’ll skip discus-
sion of the simple vertical landing case because it really just serves as a nice
sanity check for solver unit tests.

You might be wondering if these examples will have anything to do with
Mars, given the original paper title. Just like the paper, my examples won’t
use parameters specific to Mars because everything is non-dimensionalized and
scaled for numerical stability. There isn’t anything stopping this technique from
being applied to a Mars landing problem, it just requires some future work (see
Section 6).

5.1 In-plane Maneuver

This mimics the in-plane maneuver presented in the original paper. The vehicle
is approaching the landing site horizontally with significant speed and must
simultaneously rotate in-plane and decelerate to land vertically. Figure 2 shows
the vehicle trajectory in the Up-East plane. Note that just like the original
paper, the entire problem works with non-dimensionalized quantities, which is
why the length scales are so small. To be clear, the visualized rocket body
length and engine plume length are scaled purely for visualization purposes.
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Figure 2: Vehicle path in the planar maneuver case. Blue is the rocket body
(not to scale), red is the engine exhaust plume (not to scale).

The vehicle maintains its horizontal orientation for as long as possible so it
can purely shave off lateral speed, then gimbals the engine to pivot the vehicle
to its upright position while falling towards the landing site before finally firing
at max thrust at the end to perform a soft landing. The descent profile is
illustrated in Figure 3.

Figure 3: Inertial x-coordinate (non-dimensional altitude) over the trajectory.

We can see that the vehicle rides the 90◦ tilt angle limit during the first part
of the trajectory in Figure 4, then takes advantage of my tilt limit constraint at
the end to avoid the effort of landing perfectly vertically. Bang-bang control is
allowed in this problem formulation, and since we’re minimizing time of flight,
the solver takes advantage of this in Figure 5. It also maxes out the body z-axis
angular rate limit to make the maneuver as quickly as possible, illustrated in
Figure 6. Finally, we can see that the time-of-flight estimate converges within
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a small number of iterations in Figure 7.

Figure 4: Vehicle tilt in degrees over the trajectory.

Figure 5: Non-dimensional thrust magnitude over the trajectory.

Figure 6: Body z-axis angular rate in degrees over the trajectory.
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Figure 7: Dilation coefficient estimate over successive convexification iterations.

5.2 Out-of-plane Maneuver

This example forces a more interesting 3D maneuver down to the landing site.
The vehicle has to rapidly decelerate, but it also has to re-orient itself and
translate over to the landing site over the course of the landing burn. It again
starts horizontal with substantial speed, but it’s not pointing exactly in the
direction of the landing site. The twisting maneuver down to the landing site is
shown in Figure 8.

Figure 8: Out-of-plane landing maneuver. Blue is the rocket body (not to scale),
red is the engine exhaust plume (not to scale).

The solution first gimbals heavily to re-orient the rocket body while still
coasting with substantial speed, then swings the engine back to push it later-
ally towards the landing site, before finally swinging the engine back the other
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direction to cancel out body angular velocities and land vertically at the origin.
The descent profile is illustrated in Figure 9.

Figure 9: Inertial x-coordinate (non-dimensional altitude) over the trajectory.

We can see that it again uses bang-bang control and saturates the thrust
limits for most of the flight in Figure 8. For this particular problem, it doesn’t
need to saturate the body angular rate limits as shown in Figure 11, but it
does ride the 90 deg tilt limit again for the first section of the trajectory in
Figure 12, then again takes advantage of my tilt limit constraint at the end
to avoid the effort of landing perfectly vertically. Finally, we can see that the
dilation coefficient estimate still converges within a small number of successive
convexification iterations in Figure 13.

Figure 10: Non-dimensional thrust magnitude over the trajectory.
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Figure 11: Body angular rates in degrees over the trajectory.

Figure 12: Vehicle tilt in degrees over the trajectory.

Figure 13: Dilation coefficient estimate over successive convexification itera-
tions.
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6 Future Work

For numerical stability purposes, this implementation requires all problem quan-
tities to be non-dimensionalized and appropriately scaled to prevent magnitude
differences of many orders of magnitude across optimization quantities. Ideally,
this library would take in arbitrary vehicle configurations and boundary con-
ditions and perform all required non-dimensionalization and scaling under the
hood for the user.

I currently compute the discrete dynamics quantities (37b through 37f) seri-
ally, which consumes a non-trivial percentage of the cycle time. However, given
that this calculation process starts at each discrete reference state and inte-
grates forward using controls calculated from Eq. 33a, these quantities can and
should be computed in parallel across discretization stages. Further profiling is
required to determine other performance bottlenecks to focus on.
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